

72-Mbit (2M x 36/4M x 18) Pipelined DCD Sync SRAM

Features

- Supports bus operation up to 250 MHz
- Available speed grades are 250, 200, and 167 MHz
- · Registered inputs and outputs for pipelined operation
- · Optimal for performance (double cycle deselect)
- · Depth expansion without wait state
- 3.3V core power supply (V_{DD})
- 2.5V/3.3V IO operation
- · Fast clock-to-output times
 - 3.0 ns (for 250 MHz device)
- Provide high performance 3-1-1-1 access rate
- User selectable burst counter supporting Intel[®] Pentium[®] interleaved or linear burst sequences
- · Separate processor and controller address strobes
- · Synchronous self timed writes
- · Asynchronous output enable
- CY7C1484V33, CY7C1485V33 available in JEDEC-standard Pb-free 100-pin TQFP, Pb-free and non-Pb-free 165-ball FBGA package
- IEEE 1149.1 JTAG-Compatible Boundary Scan
- · "ZZ" Sleep Mode option

Functional Description[1]

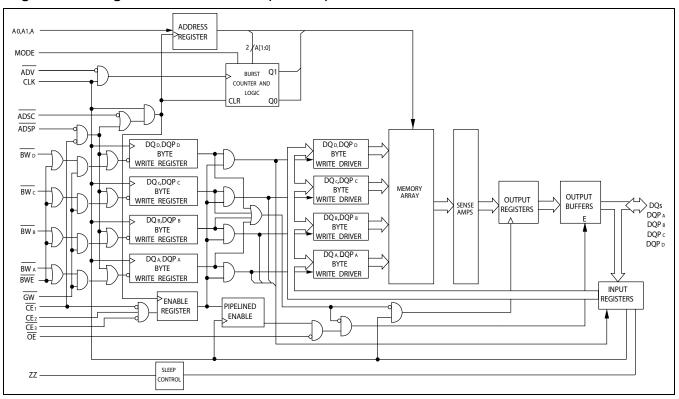
The CY7C1484V33/CY7C1485V33 SRAM integrates 2M x 36/4M x 18 SRAM cells with advanced synchronous peripheral circuitry and a two-bit counter for internal burst operation. All synchronous inputs are gated by registers controlled by a positive-edge-triggered Clock Input (CLK). The synchronous inputs include all <u>addresses</u>, all data inputs, address-pipelining <u>Chip</u> Enable ($\overline{\text{CE}}_1$), depth-expansion <u>Chip</u> Enables ($\overline{\text{CE}}_2$ and $\overline{\text{CE}}_3$), <u>Burst</u> Control inputs (ADSC, ADSP, <u>and</u> ADV), Write Enables ($\overline{\text{BW}}_X$, and BWE), and Global <u>Write</u> ($\overline{\text{GW}}$). Asynchronous inputs include the Output Enable ($\overline{\text{OE}}$) and the ZZ pin.

Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV).

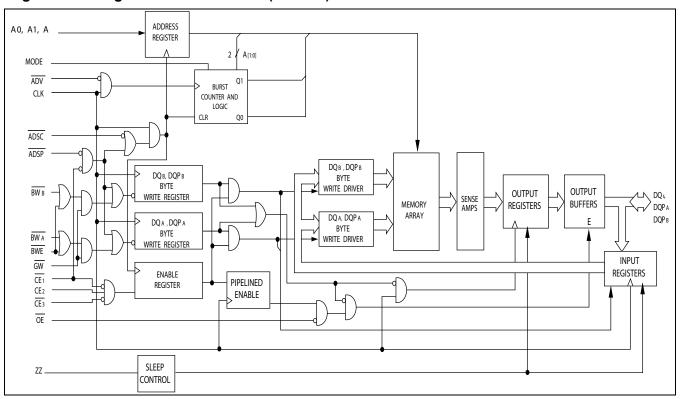
Address, data inputs, and write controls are registered on-chip to initiate a self timed write cycle. This part supports byte write operations (see "Pin Definitions" on page 5 and "Truth Table" on page 8 for further details). Write cycles can be one to four bytes wide as controlled by the byte write control inputs. GW active LOW causes all bytes to be written. This device incorporates an additional pipelined enable register which delays turning off the output buffers an additional cycle when a deselect is executed. This feature enables depth expansion without penalizing system performance.

The CY7C1484V33/CY7C1485V33 operates from a +3.3V core power supply while all outputs operate with a +3.3V or a +2.5V supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.

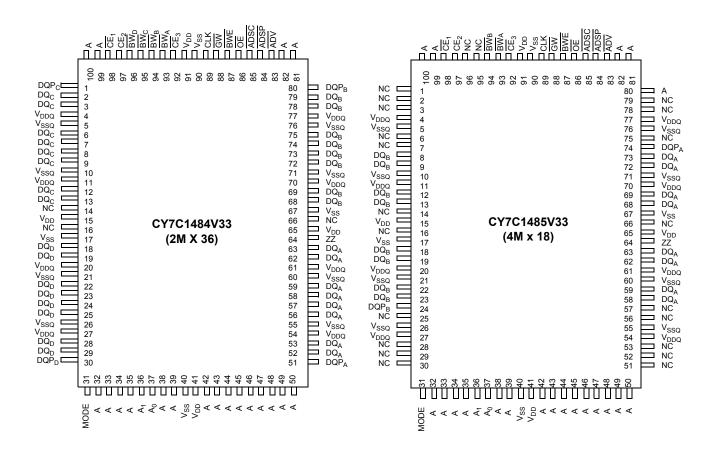
Selection Guide


	250 MHz	200 MHz	167 MHz	Unit
Maximum Access Time	3.0	3.0	3.4	ns
Maximum Operating Current	500	500	450	mA
Maximum CMOS Standby Current	120	120	120	mA

Note


^{1.} For best practices recommendations, please refer to the Cypress application note AN1064, SRAM System Guidelines.

Logic Block Diagram - CY7C1484V33 (2M x 36)


Logic Block Diagram - CY7C1485V33 (4M x 18)

Pin Configurations

100-Pin TQFP Pinout

Pin Configurations (continued)

165-Ball FBGA (15 x 17 x 1.4 mm) Pinout CY7C1484V33 (2M x 36)

	1	2	3	4	5	6	7	8	9	10	11
Α	NC/288M	Α	Œ ₁	\overline{BW}_C	\overline{BW}_B	CE ₃	BWE	ADSC	ADV	Α	NC
В	NC/144M	Α	CE ₂	BW _D	\overline{BW}_A	CLK	GW	ŌĒ	ADSP	Α	NC/576M
С	DQP_C	NC	V_{DDQ}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{DDQ}	NC/1G	DQP_B
D	DQ_C	DQ_C	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_B	DQ_B
E	DQ_C	DQ_C	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_B	DQ_B
F	DQ_C	DQ_C	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_B	DQ_B
G	DQ_C	DQ_C	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_B	DQ_B
Н	NC	NC	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC	NC	ZZ
J	DQ_D	DQ_D	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	DQ_A
K	DQ_D	DQ_D	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	DQ_A
L	DQ_D	DQ_D	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	DQ_A
M	DQ_D	DQ_D	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	DQ_A
N	DQP _D	NC	V_{DDQ}	V_{SS}	NC	Α	NC	V_{SS}	V_{DDQ}	NC	DQP_A
Р	NC	Α	Α	Α	TDI	A1	TDO	Α	Α	Α	Α
R	MODE	Α	Α	Α	TMS	A0	TCK	Α	Α	Α	Α

CY7C1485V33 (4M x 18)

	1	2	3	4	5	6	7	8	9	10	11
Α	NC/288M	Α	CE ₁	BW _B	NC	CE ₃	BWE	ADSC	ADV	Α	Α
В	NC/144M	Α	CE ₂	NC	\overline{BW}_A	CLK	GW	ŌĒ	ADSP	Α	NC/576M
С	NC	NC	V_{DDQ}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{SS}	V_{DDQ}	NC/1G	DQPA
D	NC	DQ_B	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	NC	DQ_A
E	NC	DQ _B	V_{DDQ}	V_{DD}	V_{SS}	V _{SS}	V _{SS}	V_{DD}	V_{DDQ}	NC	DQ_A
F	NC	DQ_B	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	NC	DQ_A
G	NC	DQ_B	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	NC	DQ_A
Н	NC	NC	NC	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	NC	NC	ZZ
J	DQ_B	NC	V_{DDQ}	V_{DD}	'V _{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	NC
K	DQ_B	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	NC
L	DQ_B	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	NC
M	DQ_B	NC	V_{DDQ}	V_{DD}	V_{SS}	V_{SS}	V_{SS}	V_{DD}	V_{DDQ}	DQ_A	NC
N	DQP _B	NC	V_{DDQ}	V _{SS}	NC	Α	NC	V _{SS}	V_{DDQ}	NC	NC
Р	NC	Α	Α	Α	TDI	A1	TDO	Α	Α	Α	Α
R	MODE	Α	Α	Α	TMS	A0	TCK	Α	Α	Α	Α

Pin Definitions

Pin Name	Ю	Description
A ₀ , A ₁ , A	Input- Synchronous	Address Inputs <u>Used to Select One of the Address Locations</u> . <u>Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and CE₁, CE₂, and CE₃ are sampled active. A1: A0 are fed to the two-bit counter.</u>
BW _A , BW _B BW _C , BW _D	Input- Synchronous	Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
GW	Input- Synchronous	Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted (ALL bytes are written, regardless of the values on $\overline{BW_X}$ and \overline{BWE}).
BWE	Input- Synchronous	Byte Write Enable Input, Active LOW . Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
CLK	Input- Clock	Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW during a burst operation.
CE₁	Input- Synchronous	Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and \overline{CE}_3 to select or deselect the device. \overline{ADSP} is ignored if \overline{CE}_1 is HIGH. \overline{CE}_1 is sampled only when a new external address is loaded.
CE ₂	Input- Synchronous	Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE_1 and CE_3 to select or deselect the device. CE_2 is sampled only when a new external address is loaded.
CE ₃	Input- Synchronous	Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_1 and CE_2 to select or deselect the device. CE_3 is sampled only when a new external address is loaded.
ŌĒ	Input- Asynchronous	Output Enable, Asynchronous Input, active LOW. Controls the direction of the IO pins. When LOW, the IO pins behave as outputs. When deasserted HIGH, DQ pins are tri-stated, and act as input data pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.
ADV	Input- Synchronous	Advance Input Signal, Sampled on the Rising Edge of CLK, Active LOW. When asserted, it automatically increments the address in a burst cycle.
ADSP	Input- Synchronous	Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE ₁ is deasserted HIGH.
ADSC	Input- Synchronous	Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A1: A0 are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
ZZ	Input- Asynchronous	ZZ "Sleep" Input, Active HIGH. When asserted HIGH, places the device in a non-time-critical "sleep" condition with data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal pull down.
DQs, DQPs	IO- Synchronous	Bidirectional Data IO Lines . As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP _X are placed in a tri-state condition.
V_{DD}	Power Supply	Power supply inputs to the core of the device.
V_{SS}	Ground	Ground for the core of the device.
V _{SSQ} ^[2]	IO Ground	Ground for the IO circuitry.
V_{DDQ}	IO Power Supply	Power supply for the IO circuitry.

Pin Definitions (continued)

Pin Name	10	Description
MODE	Input- Static	Selects Burst Order . When tied to GND selects linear burst sequence. When tied to V_{DD} or left floating selects interleaved burst sequence. This is a strap pin and must remain static during device operation. Mode Pin has an internal pull up.
TDO	JTAG Serial Output Synchronous	Serial data-out to the JTAG circuit . Delivers data on the negative edge of TCK. If the JTAG feature is not used, this pin must be disconnected. This pin is not available on TQFP packages.
TDI	JTAG Serial Input Synchronous	Serial data-in to the JTAG circuit . Sampled on the rising edge of TCK. If the JTAG feature is not used, this pin can be disconnected or connected to V _{DD} . This pin is not available on TQFP packages.
TMS	JTAG Serial Input Synchronous	Serial data-in to the JTAG circuit . Sampled on the rising edge of TCK. If the JTAG feature is not used, this pin can be disconnected or connected to V _{DD} . This pin is not available on TQFP packages.
TCK	JTAG Clock	Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be connected to V _{SS} . This pin is not available on TQFP packages.
NC	-	No Connects . Not internally connected to the die. 144M, 288M, 576M, and 1G are address expansion pins and are not internally connected to the die.

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock.

The CY7C1484V33/CY7C1485V33 supports secondary cache in systems using either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486™ processors. The linear burst sequence is suited for processors that use a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC). Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.

Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BW $_{\rm X}$) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.

Synchronous Chip Selects \overline{CE}_1 , CE_2 , \overline{CE}_3 and an asynchronous Output Enable (\overline{OE}) provide easy bank selection and output tri-state control. ADSP is ignored if \overline{CE}_1 is HIGH.

Single Read Accesses

This access is initiated <u>when</u> the <u>following</u> conditions are satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2) <u>chip selects</u> are all asserted active, and (3) the write signals (GW, BWE) are all deasserted HIGH. ADSP is ignored if CE_1 is HIGH. The address presented to the address inputs is stored into the address advancement logic and the Address Register while being presented to the memory core. The corresponding data is allowed to propagate to the input of the Output Registers. At the rising edge of the next clock the data

is allowed to propagate <u>through</u> the output register and onto the data bus within t_{CO} if \overline{OE} is active LOW. The only exception occurs when the SRAM is emerging from a deselected state to a selected state; its outputs are always tri-stated during the first cycle of the access. After <u>the first cycle</u> of the access, the outputs are controlled by the \overline{OE} signal. Consecutive single read cycles are supported.

The CY7C1484V33/CY7C1485V33 is a double cycle deselect part. After the SRAM is deselected at clock rise by the chip select and either ADSP or ADSC signals, its output will tri-state immediately after the next clock rise.

Single Write Accesses Initiated by ADSP

This access is initiated when <u>both</u> of the following conditions are satisfied at clock rise: (1) $\overline{\text{ADSP}}$ is asserted LOW, and (2) chip select is asserted active. The address presented is loaded into the address register and the address advancement logic <u>while being delivered</u> to the <u>me</u>mory core. The write signals ($\overline{\text{GW}}$, $\overline{\text{BWE}}$, and $\overline{\text{BW}}_{\chi}$) and $\overline{\text{ADV}}$ inputs are ignored during this first cycle.

ADSP triggered write accesses require two clock cycles to complete. If \overline{GW} is asserted LOW on the second clock rise, the data presented to the DQ_χ inputs is written into the corresponding address location in the memory core. If \overline{GW} is HIGH, then the write operation is controlled by the \overline{BWE} and \overline{BW}_χ signals. The CY7C1484V33/CY7C1485V33 provides byte write capability that is described in the "Truth Table for Read/Write" on page 9. Asserting the Byte Write Enable input (BWE) with the selected Byte Write input will selectively write to only the desired bytes. Bytes not selected during a byte write operation remain unaltered. A synchronous self timed write mechanism has been provided to simplify the write operations.

Because the CY7C1484V33/ \underline{CY} 7C1485V33 is a common IO device, the Output Enable (\overline{OE}) must be deasserted HIGH before presenting data to the DQ inputs. Doing so tri-states the output drivers. As a safety precaution, DQ are automatically

tri-stated whenever a write cycle is detected, regardless of the state of $\overline{\text{OE}}$.

Single Write Accesses Initiated by ADSC

ADSC write accesses are initiated when the following conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted HIGH, (3) chip select is asserted active, and (4) the appropriate combination of the write inputs (GW, BWE, and BWv) are asserted active to conduct a write to the desired byte(s). ADSC triggered write accesses require a single clock cycle to complete. The address presented is loaded into the address register and the address advancement logic while being delivered to the memory core. The ADV input is ignored during this cycle. If a global write is conducted, the data presented to the DQ_X is written into the corresponding address location in the memory core. If a byte write is conducted, only the selected bytes are written. Bytes not selected during a byte write operation remain unaltered. A synchronous self timed write mechanism has been provided to simplify the write operations.

Because the CY7C1484V33/CY7C1485V33 is a common IO device, the Output Enable (\overline{OE}) must be deasserted HIGH before presenting data to the DQ_X inputs. Doing so tri-states the output drivers. As a safety precaution, DQ_X are automatically tri-stated whenever a write cycle is detected, regardless of the state of \overline{OE} .

Burst Sequences

The CY7C1484V33/CY7C1485V33 provides a two-bit wraparound counter, fed by $A_{[1:0]}$, that implements either an interleaved or linear burst sequence. The interleaved burst sequence is designed specifically to support Intel Pentium applications. The linear burst sequence is designed to support processors that follow a linear burst sequence. The burst sequence is user selectable through the MODE input. Both read and write burst operations are supported.

Asserting $\overline{\text{ADV}}$ LOW at clock rise automatically increments the burst counter to the next address in the burst sequence. Both read and write burst operations are supported.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected before entering the "sleep" mode. $\overline{\text{CEs}}$, $\overline{\text{ADSP}}$, and $\overline{\text{ADSC}}$ must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

Interleaved Burst Address Table (MODE = Floating or V_{DD})

First Address A1: A0	Second Address A1: A0	Third Address A1: A0	Fourth Address A1: A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table (MODE = GND)

First Address A1: A0	Second Address A1: A0	Third Address A1: A0	Fourth Address A1: A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
I _{DDZZ}	Sleep mode standby current	$ZZ \ge V_{DD} - 0.2V$		120	mA
t _{ZZS}	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2V$		2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ ≤ 0.2V	2t _{CYC}		ns
t _{ZZI}	ZZ Active to sleep current	This parameter is sampled		2t _{CYC}	ns
t _{RZZI}	ZZ Inactive to exit sleep current	This parameter is sampled	0		ns

Truth Table

The following is the Truth Table for the CY7C1484V33/CY7C1485V33. $^{[3,\ 4,\ 5,\ 6,\ 7]}$

Operation	Add. Used	CE ₁	CE ₂	CE ₃	ZZ	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselect Cycle, Power Down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L-H	Tri-State
Deselect Cycle, Power Down	None	L	L	Х	L	L	Х	Х	Х	Χ	L-H	Tri-State
Deselect Cycle, Power Down	None	L	Х	Н	L	L	X	Χ	Х	Χ	L-H	Tri-State
Deselect Cycle, Power Down	None	L	L	Х	L	Н	L	Х	Х	Х	L-H	Tri-State
Deselect Cycle, Power Down	None	L	Х	Н	L	Н	L	Х	Х	Х	L-H	Tri-State
Sleep Mode, Power Down	None	Х	Х	Х	Н	Х	X	Χ	Х	Χ	Х	Tri-State
Read Cycle, Begin Burst	External	L	Н	L	L	L	Х	Х	Х	L	L-H	Q
Read Cycle, Begin Burst	External	L	Н	L	L	L	Х	Х	Х	Н	L-H	Tri-State
Write Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	L	Χ	L-H	D
Read Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	Н	L	L-H	Q
Read Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	Н	Н	L-H	Tri-State
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	L	L-H	Q
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	Н	L-H	Tri-State
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	L	L-H	Q
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	Н	L-H	Tri-State
Write Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Χ	L-H	D
Write Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	L	Χ	L-H	D
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	L	L-H	Q
Read Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L-H	Tri-State
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	L	L-H	Q
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	Н	L-H	Tri-State
Write Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L-H	D
Write Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	L	Х	L-H	D

Notes

- X = Do Not Care, H = Logic HIGH, L = Logic LOW.
 WRITE = L when any one or more Byte Write Enable signals and BWE = L or GW = L. WRITE = H when all Byte Write Enable signals, BWE, GW = H.
 The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
 The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW_X. Writes can occur only on subsequent clocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to enable the outputs to tri-state. OE is a do not care for the remainder of the write cycle.
- 7. $\overline{\text{OE}}$ is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when $\overline{\text{OE}}$ is inactive or when the device is deselected, and all data bits behave as outputs when $\overline{\text{OE}}$ is active (LOW).

Truth Table for Read/Write

The following is the Truth Table for Read/Write for the CY7C1484V33/CY7C1485V33/. $^{[5,\ 8]}$

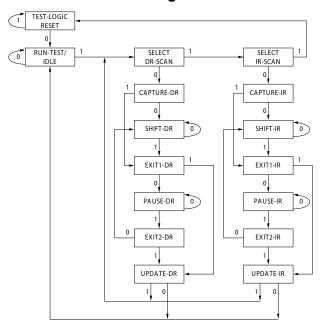
Function (CY7C1484V33)	GW	BWE	BW _D	BW _C	BWB	BW _A
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write Byte A – (DQ _A and DQP _A)	Н	L	Н	Н	Н	L
Write Byte B – (DQ _B and DQP _B)	Н	L	Н	Н	L	Н
Write Bytes B, A	Н	L	Н	Н	L	L
Write Byte C – (DQ _C and DQP _C)	Н	L	Н	L	Н	Н
Write Bytes C, A	Н	L	Н	L	Н	L
Write Bytes C, B	Н	L	Н	L	L	Н
Write Bytes C, B, A	Н	L	Н	L	L	L
Write Byte D – (DQ _D and DQP _D)	Н	L	L	Н	Н	Н
Write Bytes D, A	Н	L	L	Н	Н	L
Write Bytes D, B	Н	L	L	Н	L	Н
Write Bytes D, B, A	Н	L	L	Н	L	L
Write Bytes D, C	Н	L	L	L	Н	Н
Write Bytes D, C, A	Н	L	L	L	Н	L
Write Bytes D, C, B	Н	L	L	L	L	Н
Write All Bytes	Н	L	L	L	L	L
Write All Bytes	L	Х	Х	Х	Х	Х

Function (CY7C1485V33)	GW	BWE	BW _B	BW _A
Read	Н	Н	Х	Х
Read	Н	L	Н	Н
Write Byte A – (DQ _A and DQP _A)	Н	L	Н	L
Write Byte B – (DQ _B and DQP _B)	Н	L	L	Н
Write All Bytes	Н	L	L	L
Write All Bytes	L	Х	Х	Х

Note

^{8.} Table lists only a partial listing of the byte write combinations. Any combination of \overline{BW}_X is valid. Appropriate write will be done based on which byte write is active.

IEEE 1149.1 Serial Boundary Scan (JTAG)


The CY7C1484V33/CY7C1485V33 incorporates a serial boundary scan test access port (TAP). This port operates in accordance with IEEE Standard 1149.1-1990 but does not have the set of functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because their inclusion places an added delay in the critical speed path of the SRAM. Note that the TAP controller functions in a manner that does not conflict with the operation of other devices using 1149.1 fully compliant TAPs. The TAP operates using JEDEC-standard 3.3V or 2.5V IO logic levels.

The CY7C1484V33/CY7C1485V33 contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, tie TCK LOW (V_{SS}) to prevent device clocking. TDI and TMS are internally pulled up and may be unconnected. They may alternatively be connected to V_{DD} through a pull up resistor. TDO should be left unconnected. At power up, the device comes up in a reset state, which does not interfere with the operation of the device.

TAP Controller State Diagram

The 0/1 next to each state represents the value of TMS at the rising edge of TCK.

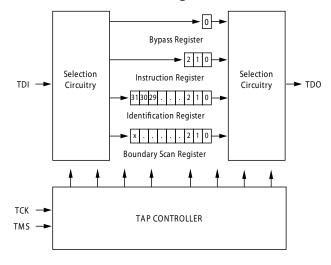
Test Access Port (TAP)

Test Clock (TCK)

The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK.

Test Mode Select (TMS)

The TMS input gives commands to the TAP controller and is sampled on the rising edge of TCK. You can leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level.


Test Data-In (TDI)

The TDI ball serially inputs information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information about loading the instruction register, see the TAP Controller State Diagram. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See TAP Controller Block Diagram.)

Test Data-Out (TDO)

The TDO output ball serially clocks data-out from the registers. Whether the output is active depends upon the current state of the TAP state machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. (See TAP Controller State Diagram.)

TAP Controller Block Diagram

Performing a TAP Reset

Perform a RESET by forcing TMS HIGH (V_{DD}) for five rising edges of TCK. This RESET does not affect the operation of the SRAM and may be performed while the SRAM is operating.

At power up, the TAP is reset internally to ensure that TDO comes up in a High-Z state.

TAP Registers

Registers are connected between the TDI and TDO balls and enable data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO balls, as shown in the "TAP Controller Block Diagram" on page 10. At power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state, as described in the previous section.

When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary '01' pattern to enable fault isolation of the board-level serial test data path.

Bypass Register

To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (V_{SS}) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all the input and bidirectional balls on the SRAM. The x36 configuration has a 73-bit-long register and the x18 configuration has a 54-bit-long register.

The boundary scan register is loaded with the contents of the RAM IO ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller moves to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can be used to capture the contents of the IO ring.

The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in "Identification Register Definitions^[12]" on page 13.

TAP Instruction Set

Overview

Eight different instructions are possible with the three-bit instruction register. All combinations are listed in "Identification Codes" on page 14. Three of these instructions are listed as RESERVED and must not be used. The other five instructions are described in detail below.

The TAP controller used in this SRAM is not fully compliant to the 1149.1 convention because some of the mandatory 1149.1 instructions are not fully implemented.

The TAP controller cannot be used to load address data or control signals into the SRAM and cannot preload the IO buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of

SAMPLE/PRELOAD; rather, it performs a capture of the IO ring when these instructions are executed.

Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction after it is shifted in, the TAP controller must be moved into the Update-IR state.

EXTEST

EXTEST is a mandatory 1149.1 instruction, which is to be executed whenever the instruction register is loaded with all zeros. EXTEST is not implemented in this SRAM TAP controller, and therefore this device is not compliant to 1149.1. The TAP controller does recognize an all-zero instruction.

When an EXTEST instruction is loaded into the instruction register, the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. There is one difference between the two instructions. Unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state.

IDCODE

The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and enables the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state.

The IDCODE instruction is loaded into the instruction register at power up or whenever the TAP controller is in a test logic reset state.

SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO balls when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High-Z state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The PRELOAD portion of this instruction is not implemented, so the device TAP controller is not fully 1149.1 compliant.

When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and bidirectional balls is captured in the boundary scan register.

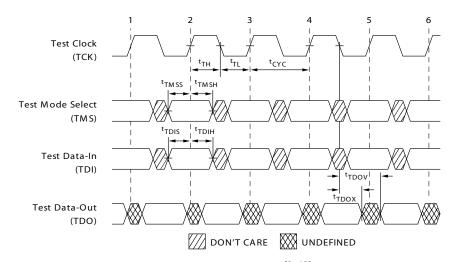
Be aware that the TAP controller clock can only operate at a frequency up to 10 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output may undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that may be captured. Repeatable results may not be possible.

To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture setup plus hold time (t_{CS} plus t_{CH}).

The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CLK captured in the boundary scan register.

After the data is captured, you can shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO balls.

Note that because the PRELOAD part of the command is not implemented, putting the TAP to the Update-DR state while performing a SAMPLE/PRELOAD instruction has the same effect as the Pause-DR command.


BYPASS

When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO balls. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.

Reserved

These instructions are not implemented but are reserved for future use. Do not use these instructions.

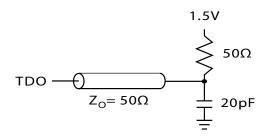
TAP Timing

TAP AC Switching Characteristics Over the Operating Range^[9, 10]

Parameter	Description	Min	Max	Unit
Clock		I	l	l .
t _{TCYC}	TCK Clock Cycle Time	50		ns
t _{TF}	TCK Clock Frequency		20	MHz
t _{TH}	TCK Clock HIGH time	20		ns
t _{TL}	TCK Clock LOW time	20		ns
Output Time	es	1	•	•
t _{TDOV}	TCK Clock LOW to TDO Valid		10	ns
t _{TDOX}	TCK Clock LOW to TDO Invalid	0		ns
Setup Time	s			
t _{TMSS}	TMS Setup to TCK Clock Rise	5		ns
t _{TDIS}	TDI Setup to TCK Clock Rise	5		ns
t _{CS}	Capture Setup to TCK Rise	5		
Hold Times				
t _{TMSH}	TMS hold after TCK Clock Rise	5		ns
t _{TDIH}	TDI Hold after Clock Rise	5		ns
t _{CH}	Capture Hold after Clock Rise	5		ns

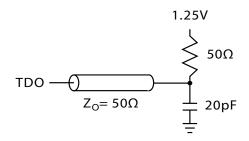
Notes

^{9.} t_{CS} and t_{CH} refer to the setup and hold time requirements of latching data from the boundary scan register.


^{10.} Test conditions are specified using the load in TAP AC Test Conditions. $t_R/t_F = 1$ ns.

3.3V TAP AC Test Conditions

Input pulse levels	V _{SS} to 3.3V
Input rise and fall times	1 ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Test load termination supply voltage	1.5V


3.3V TAP AC Output Load Equivalent

2.5V TAP AC Test Conditions

Input pulse levels	V _{SS} to 2.5V
Input rise and fall time	1 ns
Input timing reference levels	1.25V
Output reference levels	1.25V
Test load termination supply voltage	1.25V

2.5V TAP AC Output Load Equivalent

TAP DC Electrical Characteristics And Operating Conditions

 $(0^{\circ}\text{C} < \text{TA} < +70^{\circ}\text{C}; \text{VDD} = 3.135\text{V to } 3.6\text{V unless otherwise noted})^{[11]}$

Parameter	Description	Test	Conditions	Min	Max	Unit
V _{OH1}	Output HIGH Voltage	$I_{OH} = -4.0 \text{ mA}, V_{DE}$	_{DQ} = 3.3V	2.4		V
		$I_{OH} = -1.0 \text{ mA}, V_{DE}$	_{OQ} = 2.5V	2.0		V
V _{OH2}	Output HIGH Voltage	I _{OH} = -100 μA	$V_{DDQ} = 3.3V$	2.9		V
			V _{DDQ} = 2.5V	2.1		V
V _{OL1}	Output LOW Voltage	I_{OL} = 8.0 mA, V_{DDO}	I _{OL} = 8.0 mA, V _{DDQ} = 3.3V		0.4	V
		I _{OL} = 1.0 mA, V _{DDQ} = 2.5V			0.4	V
V_{OL2}	Output LOW Voltage	I _{OL} = 100 μA	$V_{DDQ} = 3.3V$		0.2	V
			V _{DDQ} = 2.5V		0.2	V
V _{IH}	Input HIGH Voltage	V _{DDQ} = 3.3V		2.0	V _{DD} + 0.3	V
		V _{DDQ} = 2.5V		1.7	V _{DD} + 0.3	V
V _{IL}	Input LOW Voltage	$V_{DDQ} = 3.3V$		-0.5	0.7	V
		V _{DDQ} = 2.5V		-0.3	0.7	V
I _X	Input Load Current	$GND \leq V_{IN} \leq V_{DDQ}$		-5	5	μΑ

Identification Register Definitions^[12]

Instruction Field	CY7C1484V33 (2M x 36)	CY7C1485V33 (4M x 18)	Description
Revision Number (31:29)	000	000	Describes the version number
Device Depth (28:24)	01011	01011	Reserved for internal use
Architecture/Memory Type(23:18)	000110	000110	Defines memory type and architecture
Bus Width/Density (17:12)	100100	010100	Defines width and density
Cypress JEDEC ID Code (11:1)	00000110100	00000110100	Allows unique identification of SRAM vendor
ID Register Presence Indicator (0)	1	1	Indicates the presence of an ID register

Notes

^{11.} All voltages referenced to Vss (GND).

^{12.} Bit #24 is "1" in the ID Register Definitions for both 2.5V and 3.3V versions of this device.

Scan Register Sizes

Register Name	Bit Size (x36)	Bit Size (x18)
Instruction	3	3
Bypass	1	1
ID	32	32
Boundary Scan Order – 165BGA	73	54

Identification Codes

Instruction	Code	Description
EXTEST	000	Captures IO ring contents.
IDCODE	001	Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operations.
SAMPLE Z	010	Captures IO ring contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state.
RESERVED	011	Do Not Use: This instruction is reserved for future use.
SAMPLE/PRE LOAD	100	Captures IO ring contents. Places the boundary scan register between TDI and TDO. Does not affect SRAM operation.
RESERVED	101	Do Not Use: This instruction is reserved for future use.
RESERVED	110	Do Not Use: This instruction is reserved for future use.
BYPASS	111	Places the bypass register between TDI and TDO. This operation does not affect SRAM operations.

Boundary Scan Exit Order (2M x 36)

Bit #	165-Ball ID
1	C1
2	D1
3	E1
4	D2
5	E2
6	F1
7	G1
8	F2
9	G2
10	J1
11	K1
12	L1
13	J2
14	M1
15	N1
16	K2
17	L2
18	M2
19	R1
20	R2

Bit#	165-Ball ID
21	R3
22	P2
23	R4
24	P6
25	R6
26	N6
27	P11
28	R8
29	P3
30	P4
31	P8
32	P9
33	P10
34	R9
35	R10
36	R11
37	N11
38	M11
39	L11
40	M10

Bit#	165-Ball ID
41	L10
42	K11
43	J11
44	K10
45	J10
46	H11
47	G11
48	F11
49	E11
50	D10
51	D11
52	C11
53	G10
54	F10
55	E10
56	A10
57	B10
58	A9
59	B9
60	A8

Bit #	165-Ball ID
61	B8
62	A7
63	B7
64	B6
65	A6
66	B5
67	A5
68	A4
69	B4
70	B3
71	A3
72	A2
73	B2
·	

Boundary Scan Exit Order (4M x 18)

Bit #	165-Ball ID
1	D2
2	E2
3	F2
4	G2
5	J1
6	K1
7	L1
8	M1
9	N1
10	R1
11	R2
12	R3
13	P2
14	R4
15	P6
16	R6
17	N6
18	P11

Bit #	165-Ball ID
19	R8
20	P3
21	P4
22	P8
23	P9
24	P10
25	R9
26	R10
27	R11
28	M10
29	L10
30	K10
31	J10
32	H11
33	G11
34	F11
35	E11
36	D11

Bit #	165-Ball ID
37	C11
38	A11
39	A10
40	B10
41	A9
42	B9
43	A8
44	B8
45	A7
46	B7
47	B6
48	A6
49	B5
50	A4
51	B3
52	A3
53	A2
54	B2

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage on V_{DD} Relative to GND...... -0.5V to +4.6VSupply Voltage on V_{DDQ} Relative to GND -0.5V to $+V_{DD}$ DC Voltage Applied to Outputs

DC Input Voltage	–0.5V to V _{DD} + 0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage(MIL-STD-883, Method 3015)	>2001V
Latch Up Current	>200 mA

Operating Range

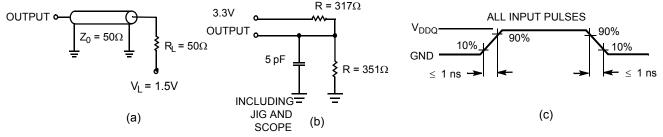
Range	Ambient Temperature	V_{DD}	V_{DDQ}
Commercial	0°C to +70°C	3.3V -5%/+10%	
Industrial	–40°C to +85°C		to V _{DD}

Electrical Characteristics Over the Operating Range^[13, 14]

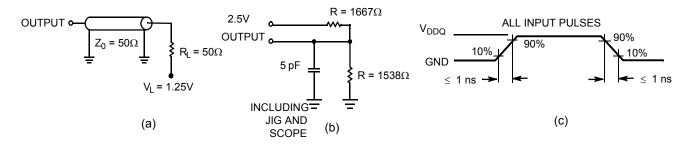
Parameter	Description	Test Conditio	ns	Min	Max	Unit
V_{DD}	Power Supply Voltage			3.135	3.6	V
V_{DDQ}	IO Supply Voltage	For 3.3V IO	For 3.3V IO		V_{DD}	V
		For 2.5V IO		2.375	2.625	V
V _{OH}	Output HIGH Voltage	For 3.3V IO, I _{OH} = -4.0 mA		2.4		V
		For 2.5V IO, I _{OH} = -1.0 mA		2.0		V
V _{OL}	Output LOW Voltage	For 3.3V IO, I _{OL} = 8.0 mA			0.4	V
		For 2.5V IO, I _{OL} = 1.0 mA			0.4	V
V _{IH}	Input HIGH Voltage ^[13]	For 3.3V IO		2.0	V _{DD} + 0.3V	V
		For 2.5V IO		1.7	V _{DD} + 0.3V	V
V _{IL}	Input LOW Voltage ^[13]	For 3.3V IO		-0.3	0.8	V
		For 2.5V IO		-0.3	0.7	V
I _X	Input Leakage Current Except ZZ and MODE	$GND \leq V_I \leq V_DDQ$		– 5	5	μА
	Input Current of MODE	Input = V _{SS}		-30		μΑ
		Input = V _{DD}		5	μΑ	
	Input Current of ZZ	Input = V _{SS}		- 5		μΑ
		Input = V _{DD}		30	μА	
l _{oz}	Output Leakage Current	$GND \le V_I \le V_{DDQ_i}$ Output Disabled		- 5	5	μА
I_{DD}	V _{DD} Operating Supply	$V_{DD} = Max., I_{OUT} = 0 mA,$	4-ns cycle, 250 MHz		500	mA
	Current	$f = f_{MAX} = 1/t_{CYC}$			500	mA
			6-ns cycle, 167 MHz		450	mA
I _{SB1}	Automatic CE	V _{DD} = Max, Device Deselected,	4-ns cycle, 250 MHz		245	mA
	Power Down Current—TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$ $f = f_{MAX} = 1/t_{CYC}$	5-ns cycle, 200 MHz		245	mA
	Carrone 112 mpato	I IMAX "SCYC	6-ns cycle, 167 MHz		245	mA
I _{SB2}	Automatic CE Power Down Current—CMOS Inputs	V_{DD} = Max, Device Deselected, $V_{IN} \le 0.3 V$ or $V_{IN} \ge V_{DDQ} - 0.3 V$, f = 0	All speeds		120	mA
I _{SB3}	Automatic CE	V _{DD} = Max, Device Deselected, or	4-ns cycle, 250 MHz		245	mA
	Power Down Current—CMOS Inputs	$V_{IN} \le 0.3V$ or $V_{IN} \ge V_{DDQ} - 0.3V$ f = $f_{MAX} = 1/t_{CYC}$	5-ns cycle, 200 MHz		245	mA
	Our Grit—Owloo inputs	6-ns cycle, 167 M			245	mA
I _{SB4}	Automatic CE Power Down Current—TTL Inputs	V_{DD} = Max, Device Deselected, $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, f = 0	All Speeds		135	mA

^{13.} Overshoot: $V_{IH}(AC) < V_{DD}$ +1.5V (pulse width less than $t_{CYC}/2$). Undershoot: $V_{IL}(AC) > -2V$ (pulse width less than $t_{CYC}/2$). 14. Power up: assumes a linear ramp from 0V to $V_{DD}(min.)$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$.

Capacitance^[15]


Parameter	Description	Test Conditions	100 TQFP Package	165 FBGA Package	Unit
C _{ADDRESS}	Address Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	6	pF
C _{DATA}	Data Input Capacitance	$V_{DD} = 3.3V.$ $V_{DDQ} = 2.5V$	5	5	pF
C _{CTRL}	Control Input Capacitance	. DDQ =.0.	8	8	pF
C _{CLK}	Clock Input Capacitance		6	6	pF
C _{I/O}	Input/Output Capacitance		5	5	pF

Thermal Resistance^[15]


Parameter	Description	Test Conditions	100 TQFP Package	165 FBGA Package	Unit
Θ_{JA}	,	Test conditions follow standard test methods and procedures for	24.63	16.3	°C/W
Θ _{JC}	i i nermai Resistance	measuring thermal impedance, per EIA/JESD51.	2.28	2.1	°C/W

AC Test Loads and Waveforms

3.3V IO Test Load

2.5V IO Test Load

Note

^{15.} Tested initially and after any design or process change that may affect these parameters.

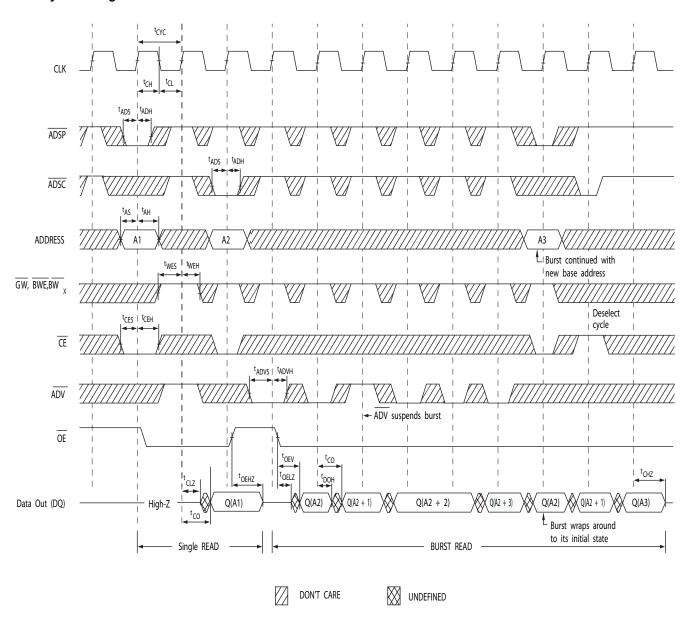
Switching Characteristics Over the Operating Range^[16, 17]

	Decemention	250 MHz		200 MHz		167 MHz		11!4
Parameter	Description	Min	Max	Min	Max	Min	Max	Unit
t _{POWER}	V _{DD} (Typical) to the First Access ^[18]	1		1		1		ms
Clock	•	•		•		•	•	
t _{CYC}	Clock Cycle Time	4		5		6		ns
t _{CH}	Clock HIGH	2.0		2.0		2.2		ns
t _{CL}	Clock LOW	2.0		2.0		2.2		ns
Output Times	<u>.</u>							
t _{CO}	Data Output Valid After CLK Rise		3.0		3.0		3.4	ns
t _{DOH}	Data Output Hold After CLK Rise	1.3		1.3		1.5		ns
t _{CLZ}	Clock to Low-Z ^[19, 20, 21]	1.3		1.3		1.5		ns
t _{CHZ}	Clock to High-Z ^[19, 20, 21]		3.0		3.0		3.4	ns
t _{OEV}	OE LOW to Output Valid		3.0		3.0		3.4	ns
t _{OELZ}	OE LOW to Output Low-Z ^[19, 20, 21]			0		0		ns
t _{OEHZ}	OE HIGH to Output High-Z ^[19, 20, 21]		3.0		3.0		3.4	ns
Setup Times								
t _{AS}	Address Setup Before CLK Rise	1.4		1.4		1.5		ns
t _{ADS}	ADSC, ADSP Setup Before CLK Rise	1.4		1.4		1.5		ns
t _{ADVS}	ADV Setup Before CLK Rise	1.4		1.4		1.5		ns
t _{WES}	GW, BWE, BW _X Setup Before CLK Rise	1.4		1.4		1.5		ns
t _{DS}	Data Input Setup Before CLK Rise	1.4		1.4		1.5		ns
t _{CES}	Chip Enable Setup Before CLK Rise	1.4		1.4		1.5		ns
Hold Times								
t _{AH}	Address Hold After CLK Rise			0.4		0.5		ns
t _{ADH}				0.4		0.5		ns
t _{ADVH}	DVH ADV Hold After CLK Rise			0.4		0.5		ns
t _{WEH}	GW, BWE, BW _X Hold After CLK Rise	0.4		0.4		0.5		ns
t _{DH}	Data Input Hold After CLK Rise	0.4		0.4		0.5		ns
t _{CEH}	Chip Enable Hold After CLK Rise	0.4		0.4		0.5		ns

^{16.} Timing reference level is 1.5V when V_{DDQ} = 3.3V and is 1.25V when V_{DDQ} = 2.5V.

17. Test conditions shown in (a) of "AC Test Loads and Waveforms" on page 17 unless otherwise noted.

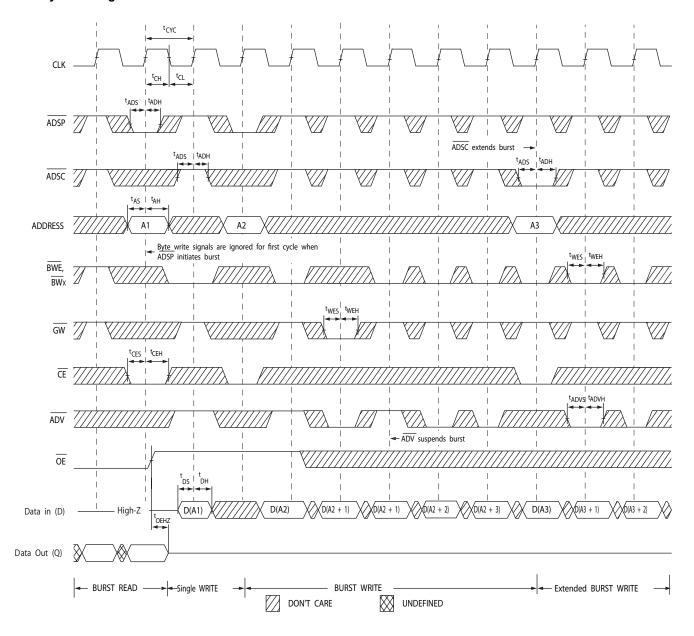
18. This part has a voltage regulator internally; t_{POWER} is the time that the power must be supplied above V_{DD}(minimum) initially before a read or write operation can


t_{CHZ}, t_{CLZ}, t_{DeLZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of AC Test Loads and Waveforms on page 17. Transition is measured ±200 mV from steady-state voltage.
 At the supplied voltage and temperature, t_{OEHZ} is less than t_{CLZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve High-Z before Low-Z under the same system conditions.

^{21.} This parameter is sampled and not 100% tested.

Switching Waveforms

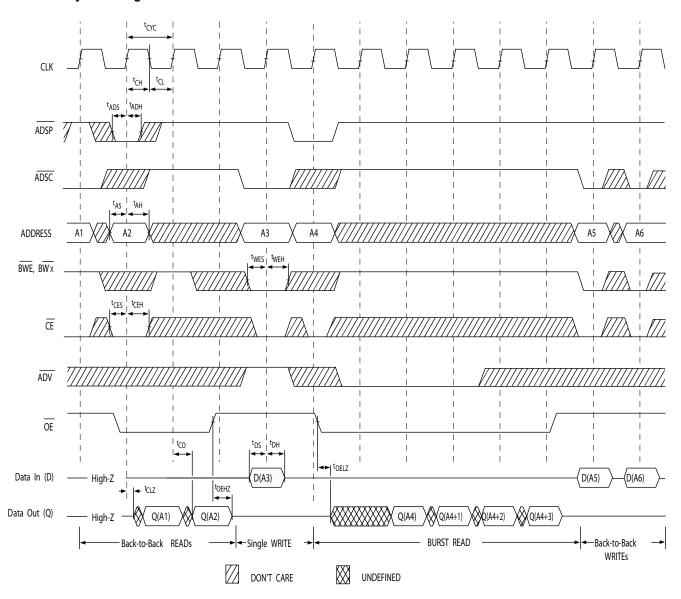
Read Cycle Timing^[22]



Note
22. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, \overline{CE}_2 is HIGH, and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH, \overline{CE}_2 is LOW, or \overline{CE}_3 is HIGH.

Switching Waveforms (continued)

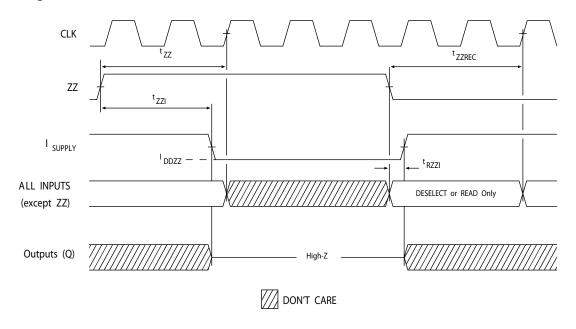
Write Cycle Timing^[22, 23]


Note

23. Full width write can be initiated by either $\overline{\text{GW}}$ LOW; or by $\overline{\text{GW}}$ HIGH, $\overline{\text{BWE}}$ LOW, and $\overline{\text{BW}}_{X}$ LOW.

Switching Waveforms (continued)

$\textbf{Read/Write Cycle Timing}^{[22,\ 24,\ 25]}$


Notes

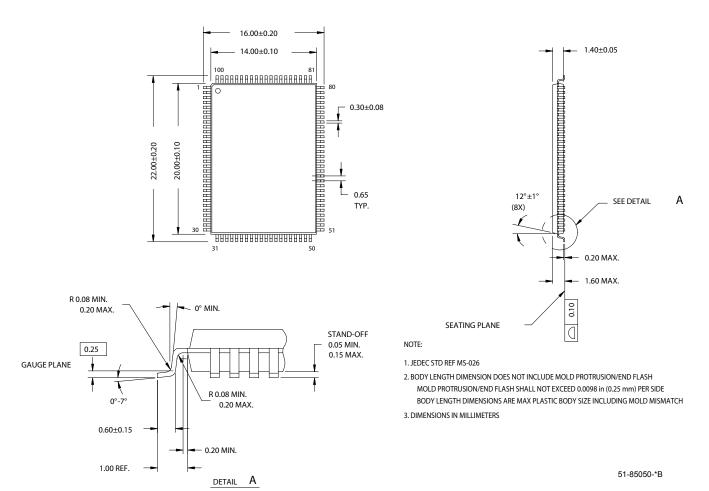
^{24.} The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC. 25. GW is HIGH.

Switching Waveforms (continued)

$\textbf{ZZ Mode Timing}^{[26,\ 27]}$

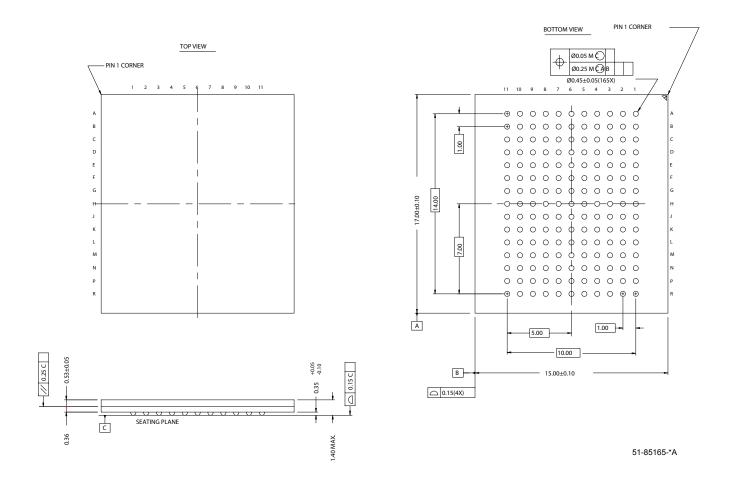
26. Device must be deselected when entering ZZ mode. See "Truth Table" on page 8 for all possible signal conditions to deselect the device. 27. DQs are in high-Z when exiting ZZ sleep mode.

Ordering Information


Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or visit www.cypress.com for actual products offered.

167	Commercial
CY7C1484V33-167BZC	
CY7C1485V33-167BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Fine Pitch Ball Grid Array (15 x 17 x 1.4	
CY7C1484V33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-167BZXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-167BZI CY7C1485V33-167BZI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-200AXC CY7C1485V33-200AXC CY7C1485V33-200AXC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZX CY7C1485V33-250BZX S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array	
CY7C1485V33-167BZXC	
CY7C1484V33-167AXI CY7C1485V33-167AXI CY7C1485V33-167BZI CY7C1485V33-167BZI CY7C1485V33-167BZI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-167BZXI CY7C1485V33-200AXC CY7C1485V33-200BZC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZX CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZX CY7C1485V33-200BZX CY7C1485V33-200BZX CY7C1485V33-200BZX CY7C1485V33-200BZX S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200BZX CY7C1485V33-200BZX S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250AXC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY	Free
CY7C1485V33-1678ZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200AXC CY7C1485V33-200BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200AXI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC CY7C1485V33-2	
CY7C1484V33-167BZI CY7C1485V33-167BZI CY7C1484V33-167BZI S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-167BZXI S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200AXC CY7C1485V33-200AXC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200BZXI S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200BZXI CY7C1485V33-200BZXI S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200BZXI S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array	Industrial
CY7C1485V33-167BZI	
CY7C1484V33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Fee CY7C1485V33-200AXC CY7C1485V33-200AXC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-250BZXI CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC S1-85165 S1-85165	
CY7C1485V33-167BZXI	
CY7C1484V33-200AXC	-ree
CY7C1485V33-200BZC CY7C1484V33-200BZC CY7C1484V33-200BZC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1484V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1484V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1484V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-250BZC CY7C1485V33-250BZC S1-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1484V33-200BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200AXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) CY7C1484V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Port C1485V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	Commercial
CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200BZXC CY7C1485V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-250BZC	
CY7C1484V33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F CY7C1485V33-200AXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-200AXI CY7C1484V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXI CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F CY7C1485V33-200BZXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1485V33-200BZXC CY7C1484V33-200AXI CY7C1485V33-200AXI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZI CY7C1485V33-200BZXI CY7C1484V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-200BZXI CY7C1485V33-250BZC CY7C1484V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC	
CY7C1484V33-200AXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free CY7C1484V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1484V33-250AXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	Free
CY7C1485V33-200AXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1484V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F CY7C1485V33-200BZXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1484V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F 250 CY7C1484V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	Industrial
CY7C1485V33-200BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F CY7C1485V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F 250 CY7C1484V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1484V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free 250 CY7C1484V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC CY7C1485V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1485V33-200BZXI 250 CY7C1484V33-250AXC CY7C1485V33-250AXC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC CY7C1485V33-250BZC	
250 CY7C1484V33-250AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free CY7C1485V33-250AXC CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC	Free
CY7C1485V33-250AXC CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC	
CY7C1484V33-250BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) CY7C1485V33-250BZC	Commercial
CY7C1485V33-250BZC	
CY7C1484V33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1 4 mm) Ph-F	
[-ree
CY7C1485V33-250BZXC	
CY7C1484V33-250AXI 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free	Industrial
CY7C1485V33-250AXI	
CY7C1484V33-250BZI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)	
CY7C1485V33-250BZI	
CY7C1484V33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-F	Free
CY7C1485V33-250BZXI	

Package Diagrams


Figure 1. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050

Package Diagrams (continued)

Figure 2. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165

i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	114672	08/21/02	PKS	New Data Sheet
*A	118285	01/20/03	HGK	Changed t _{CO} from 2.4 to 2.6 ns for 250 MHz Updated Features on package offering Updated Ordering information Changed Advanced Information to Preliminary
*B	233368	See ECN	NJY	Changed timing diagrams Changed logic block diagrams Modified Functional Description Modified "Functional Overview" section Added boundary scan order for all packages Included thermal numbers and capacitance values for all packages Included IDD and ISB values Removed 250-MHz offering and included 225-MHz speed bin Changed package outline for 165FBGA package Removed 119-BGA package offering
*C	299452	See ECN	SYT	Removed 225-MHz offering and included 250-MHz speed bin Changed t_{CYC} from 4.4 ns to 4.0 ns for 250-Mhz Speed Bin Changed Θ_{JA} from 16.8 to 24.63 °C/W and Θ_{JC} from 3.3 to 2.28 °C/W for 10 TQFP Package on Page # 16 Added lead-free information for 100-Pin TQFP and 165 FBGA Packages Added comment of 'Lead-free BG packages availability' below the Orderin Information
*D	323080	See ECN	PCI	Unshaded 200 and 167 MHz speed bin in the AC/DC Table and Selection Guide Address expansion pins/balls in the pinouts for all packages are modified a per JEDEC standard Added Address Expansion pins in the Pin Definitions Table Added Industrial Operating Range Modified V _{OL} , V _{OH} test conditions Removed comment of 'Lead-free BG packages availability' below the Ordering Information Updated Ordering Information Table
*E	416193	See ECN	RXU	Converted from Preliminary to Final Changed address of Cypress Semiconductor Corporation on Page# 1 fro "3901 North First Street" to "198 Champion Court" Changed the description of I_X from Input Load Current to Input Leakage Current on page# 16 Changed the I_X current values of MODE on page # 16 from -5 μ A and 30 μ to -30 μ A and 5 μ A Changed the I_X current values of ZZ on page # 16 from -30 μ A and 5 μ A to -5 μ A and 30 μ A Changed $V_{IH} \leq V_{DD}$ to $V_{IH} < V_{DD}$ on page # 16 Replaced Package Name column with Package Diagram in the Ordering Information table
*F	470723	See ECN	NXR	Added the Maximum Rating for Supply Voltage on V_{DDQ} Relative to GNE Changed t_{TH} , t_{TL} from 25 ns to 20 ns and t_{TDOV} from 5 ns to 10 ns in TAP A Switching Characteristics table. Updated the Ordering Information table.
*G	1062042	See ECN	VKN/KKVTMP	<u> </u>